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Innate immunity is the fi rst line of defense 
against pathogens and plays a key role in the 
 initiation, activation, and orientation of adaptive 
immunity. Innate immunity receptors, also 
called pattern recognition receptors (PRRs), 
recognize a few highly conserved structures, 
called pathogen-associated molecular patterns, 
expressed by microorganisms (1). PRRs are 
 either cell associated (expressed intracellularly or 
on the cell surface) or present in body fl uids. 
There are two functional classes of cell- associated 
PRRs: endocytic PRRs (i.e., scavenger recep-
tors and mannose receptors) involved in micro-
organism binding and uptake; and signaling 
PRRs (members of the Toll-like receptor [TLR], 
nucleotide-binding oligomeri zation domain, 
and helicase families) involved in cell activation 
upon contact with pathogens (2). The humoral 

arm of the innate immunity  includes soluble 
PRRs, such as collectins, fi colins, complement 
components, and pentraxins (PTXs) (3).

Members of the PTX superfamily are usu-
ally characterized by a pentameric structure and 
are highly conserved during evolution (3–6). 
This family is subdivided into two subclasses 
that depend on the length and structure of the 
molecules. The classical short PTXs C- reactive 
protein (CRP) and serum amyloid P component 
(SAP) are acute-phase proteins in humans and 
mice, respectively (7, 8), that are produced in 
the liver in response to infl ammatory mediators, 
most prominently IL-6. CRP and SAP bind, in 
a calcium-dependent manner, diff erent ligands 
and are involved in innate resistance to microbes 
and scavenging of cellular debris and extra-
cellular matrix components (4, 7). Long PTXs 
are characterized by an unrelated N-terminal 
domain coupled to a PTX-like C-terminal do-
main (3, 6, 9). The prototypic long PTX3 is rap-
idly produced and released by  diverse cell types, 
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in particular by mononuclear phagocytes, DCs, and endothe-
lial and epithelial cells in  response to primary infl ammatory 
signals (e.g., TLR engagement, TNFα, and IL-1β) (10–14). 
With high affi  nity, PTX3 binds the complement component 
C1q, the extracellular matrix TNF-inducible protein 6, and 
selected microorganisms (e.g., Aspergillus fumigatus, Pseudomonas 
aeruginosa, Salmonella typhimurium, Paracoccidioides brasiliensis, 
and zymosan) (15–18).

Recent studies in ptx3-defi cient (PTX3−/−) mice have 
shown that this molecule performs complex nonredundant 
functions in vivo, ranging from the assembly of a hyaluronic 
acid–rich extracellular matrix to female fertility to innate im-
munity against diverse microorganisms (15, 16, 19, 20). PTX3 
also binds apoptotic cells (21) and may contribute to editing 
recognition of apoptotic cells versus infectious nonself (22). 
In addition, there is evidence for a regulatory role of PTX3 
in noninfectious infl ammatory reactions (Latini, R., personal 
communication) (23). Outer membrane protein A (OmpA) is 
a conserved constituent of the outer membrane of Enterobacte-
riaceae. A search of moieties recognized by PTX3 has discov-
ered that it binds OmpA from Klebsiella pneumoniae and that it 
represents a nonredundant humoral amplifi cation loop of the 
innate immunity response to this microbial moiety (24).

Among innate cells, neutrophils play an important role 
because of their ability to be rapidly recruited in tissues during 
infections and to produce mediators that kill or inhibit micro-
bial growth (25–27). As PTX3 is important in infectious 
and infl ammatory responses (3, 28), we evaluated whether 
neutrophils produce PTX3. In previous studies, PTX3 was 
found to be expressed in HL60 cells (11) and bone marrow 
myelocytes (29) as mRNA and, by proteomic analysis, in 
neutrophil granules (30). In this paper, we report that PTX3 
is stored in a ready-made form in neutrophils but not in 
eosinophils and basophils. PTX3 is localized in specifi c gran-
ules and is secreted in response to recognition of microbial 
moieties and infl ammatory signals. PTX3 can localize in neu-
trophil extracellular traps (NETs) (31), and PTX3-defi cient 
neutrophils have defective phagocytic activity. In addition, 
injection of wild-type neutrophils restores protective immunity 
against A. fumigatus in PTX3−/− mice. Thus, neutrophils serve 
as a reservoir, ready for rapid release, of a key component of 
humoral innate immunity and complement its subsequent 
delayed neosynthesis by macrophages and DCs.

RESULTS

Storage of preformed PTX3 in resting neutrophils

FACS analysis revealed constitutive expression of PTX3 
in freshly isolated human neutrophils, as assessed by intracell-
ular labeling (mean fl uorescence intensity = 89 ± 34 and 
4 ± 1.5, using anti-PTX3 and control mAbs, respectively; 
mean ± SD; n = 8; Fig. 1 A). No expression of PTX3 
was observed on the surface of human neutrophils (not 
depicted). Recent studies reported that nonspecifi c binding of 
polyclonal Ig within neutrophils may give false positive 
results, as observed using antigranzyme antibody (32–34). 
Following the methodologies described in these studies, we 

observed similar levels of intracellular PTX3 using 20 and 
200 μg/ml of human IgG for saturation, showing that the 
detection of intracellular PTX3 in neutrophils is not related 
to nonspecifi c binding of the anti-PTX3 mAb (not depicted). 
To confi rm this observation, PTX3 expression was analyzed 
by Western blotting. Human neutrophils and DCs express 
two or three immunoreactive forms of PTX3, depending 
on the donor (with one major band at 47 kD and two 
minor bands at 44 and 42 kD; Fig. 1 B). The presence of 
intracellular PTX3 in neutrophils was also confi rmed by con-
focal microscopy (Fig. 1 C). We assessed whether other cir-
culating elements containing granules store PTX3. PTX3 
could not be detected in eosinophils and basophils (Fig. 1 C), 
nor in large granular lymphocytes (NK cells; not depicted).

PTX3 was detected in LPS-activated DCs (Fig. 1 B) (10, 
35). By ELISA, resting human neutrophils contain 24.9 ± 
3.8 ng PTX3 per 106 cells (n = 4) corresponding to �0.55 
pmol (Fig. 1 D), calculated based on the protomer molecular 
mass. Over a period of 24 h, DCs release �50.2 ± 8.1 ng 
PTX3 per 106 cells (n = 5; Fig. 1 D) (10). These results show 
that neutrophils contain considerable amounts of  preformed 
PTX3. Finally, unlike PTX3, the short PTXs CRP and SAP 
could not be localized in neutrophils (not depicted).

In agreement with a previous study (11), PTX3 mRNA 
is not expressed in freshly isolated human neutrophils, as as-
sessed by RT-PCR analysis (Fig. 1 E). As a positive control, 
PTX3 mRNA was evident in LPS-stimulated DCs (Fig. 
1 E), as previously reported (10). We thus evaluated whether 
neutrophil precursors express PTX3 mRNA. Promyelocytes, 
myelocytes/metamyelocytes, and bone marrow–segmented 
neutrophils were isolated by density centrifugation on a 
 Percoll gradient, followed by magnetic cell sorting (29, 36). 
RT-PCR analysis revealed that PTX3 mRNA is expressed in 
promyelocytes and myelocytes/metamyelocytes but not or at 
low levels in bone marrow–segmented neutrophils (Fig. 1 F, 
left), a result in accordance with the absence of PTX3 mRNA 
expression in mature peripheral neutrophils. As a positive 
control, myeloperoxidase (MPO) mRNA was mainly detected 
in promyelocytes and, at a lower level, in myelocytes but not in 
bone marrow–segmented neutrophils, as previously reported 
(29, 36), confi rming the purity of the isolated cell populations. 
Western blot analysis showed that PTX3 is expressed in the 
three populations of neutrophil precursors (Fig. 1 F, right). In 
agreement with previous observations (11), the human pro-
myelocytic cell line HL60 constitutively expresses PTX3 
mRNA (Fig. S1, available at http://www.jem.org/cgi/content/
full/jem.20061301/DC1). HL60 cells express mRNA encoding 
MPO, a marker of primary granules, but not mRNA encoding 
lactoferrin and matrix metalloproteinase 9 (MMP-9; Fig. S1), 
as previously reported (37, 38). Moreover, HL60 cells sponta-
neously produce PTX3 protein (Fig. S1).

Localization of PTX3 in neutrophil-specifi c granules

Confocal microscopy and subcellular fractionation of neutro-
phil-derived nitrogen cavitates were used to specifi cally 
 localize PTX3 within freshly isolated neutrophils. As shown 
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in Fig. 2 A, confocal studies pointed to complete colocaliza-
tion of PTX3 with lactoferrin, a constituent of specifi c gran-
ules, and, at least in part, with gelatinase (tertiary granules; 
Fig. 2 A). In contrast, no colocalization with MPO, a marker 
of azurophilic granules, was observed (Fig. 2 A). Confocal 
microscopy was combined with quantitative analysis to mea-
sure the percentage of PTX3 colocalization, as assessed by 
Pearson’s coeffi  cient of correlation. Higher degrees of colo-
calization were measured in diff erent experiments (n = 5) in 
lactoferrin+ and gelatinase+ vesicles, which display coeffi  cients 
of 72.22 ± 7.32% (r = 0.78) and 27.8 ± 8.73% (r = 0.45), 
respectively. Little or no colocalization of PTX3 was found 
with MPO+ granules (5.90 ± 2.21%; r = 0.08).

Among the MPO-negative granules, �16% contain only 
lactoferrin (specifi c) and 24% contain only gelatinase (ter-
tiary), whereas 60% contain both markers (specifi c) (39). Fig. 
2 B shows lactoferrin+ granules, gelatinase+ granules, or double-
stained granules in a representative cell. PTX3 was found to 
colocalize with lactoferrin+ granules and double-stained gra-
nules (specifi c), but no colocalization was found with tertiary 
granules that were only gelatinase+.

In an eff ort to confi rm these observations, subcellular 
fractionation of neutrophil-derived nitrogen cavitates was 
performed. PTX3 was detected in fractions that contain lac-
toferrin and part of the gelatinase distribution but not in frac-
tions containing α-mannosidase (azurophilic granules; Fig. 
2 C) or albumin (secretory vesicles/light membranes; not 
depicted) (40). Collectively, these results demonstrate the 
selective association of PTX3 with specifi c (lactoferrin+ and 
lactoferrin/gelatinase+) granules.

PTX3 release by stimulated neutrophils

We next evaluated whether neutrophils release PTX3 upon 
stimulation. FACS analysis showed that the relative intracellu-
lar level of PTX3 decreased upon 2 h of stimulation with 10 
μg/ml Staphylococcus aureus and Escherichia coli (Fig. 3 A). In con-
trast, the intracellular level of PTX3 increased in DCs stimu-
lated for 8 h with 80 ng/ml LPS compared with nonstimulated 
cells (Fig. 3 B). The levels of PTX3 were also quantifi ed by 
ELISA in the cell culture supernatants. E. coli, S. aureus, and, 
to a lesser extent, zymosan increased the release of PTX3 by 
neutrophils in a dose-dependent manner, with a maximal  eff ect 

Figure 1. PTX3 is constitutively expressed in human neutrophils. 

(A) FACS analysis of PTX3 expression in permeabilized human neutrophils 

isolated from peripheral blood. (B) Western blot analysis of PTX3 expres-

sion in neutrophils and LPS-stimulated DCs. (C) Analysis of PTX3 expres-

sion in freshly isolated neutrophils, eosinophils and basophils by confocal 

microscopy. Fluorescence (left) and differential interference contrasts 

(right, Nomarski technique) are shown. Bars, 10 μm. (D) Analysis of PTX3 

content in freshly isolated neutrophils, eosinophils, and basophils, as 

well as release by LPS-stimulated DCs, determined by ELISA (mean ± SD). 

(E) Analysis of PTX3 mRNA expression in freshly isolated human neutrophils 

by RT-PCR. Results obtained in 2 out of 10 subjects tested are presented. 

LPS-stimulated DCs are used as a positive control. RNA integrity and 

cDNA synthesis were verifi ed by amplifying GAPDH cDNA. (F) Analysis 

of PTX3 mRNA and protein in neutrophil precursors. Promyelocytes 

(PM), myelocytes/metamyelocytes (MY), and bone marrow–segmented 

neutrophils (bm-PMN) were analyzed for PTX3 and MPO mRNA expres-

sion (left). Expression of PTX3 was evaluated by Western blotting using 

the anti-PTX3 mAb 16B5 in the three populations of neutrophil precur-

sors (right), and total protein loading was evaluated by analyzing 

actin expression.
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observed with the highest concentration used (10 μg/ml; Fig. 
3 C). A similar increase of PTX3 was observed using 1 or 10 
ng/ml PMA, 0.01 or 1 μM ionomycin, and 20 ng/ml of the 
proinfl ammatory cytokine TNFα (Fig. 3 C). 20 ng/ml IL-1β 
was inactive (not depicted). Propidium iodide staining and lactate 
dehydrogenase release assay excluded that PTX3 secretion re-
sulted from cell death (not depicted). Latex beads failed to trigger 
PTX3 release (not depicted). The release of PTX3 is associated 
with a decrease in the level of intracellular PTX3 in neutro-
phils, as assessed by Western blot analysis (Fig. S2, available 
at http://www.jem.org/cgi/content/full/jem.20061301/DC1). 
PMA and S. aureus induced a time-dependent release of PTX3 
by neutrophils, signifi cant at 1 h and maximal at the latest time 
analyzed (16 h; Fig. 3 D). It is noteworthy that TNF and PMA 
induce selective release of specifi c granules (41, 42). Among 
the diff erent activators tested, microorganisms appear to be the 
most potent inducers of PTX3 release by human neutrophils. 
We therefore evaluated the ability of TLR agonists to induce 
PTX3 release. LPS, R848, Pam3CSK4, and, to a lesser extent, 
fl agellin (but not poly (I:C)) induced the release of PTX3 
by neutrophils (Fig. 3 E). In agreement with previous studies 
(43–45), we observed that a stimulation with TLR agonists 
delays neutrophil apoptosis, confi rming that the release of 

PTX3 was not a consequence of cell death (not depicted). 
 Previous experiments reported that GM-CSF increases the 
sensitivity of neutrophils to TLR agonists (46). Neutrophils 
were thus primed with 50 ng/ml GM-CSF for 2 h before stim-
ulation with zymosan, S. aureus, and TLR agonists. The levels 
of PTX3 released upon stimulation with TLR agonists or 
microorganisms were weakly but signifi cantly increased in 
GM-CSF–primed neutrophils (Fig. 3 E). In addition, microor-
ganisms and TLR agonists induced the release of MPO (Fig. 
3 F) and MMP-9 (Fig. 3 G). Independent of the stimulus used, 
PTX3 mRNA was not induced in stimulated neutrophils, as 
assessed by RT-PCR analysis after 8 h (Fig. 3 H) or 16 h (not 
depicted) of activation. These data show that microorganisms 
and TLR agonists trigger substantial release of PTX3 by hu-
man neutrophils.

Association of PTX3 with NETs

NETs are extracellular structures formed by the extrusion of 
DNA from viable neutrophils upon stimulation, and they act 
as focal points to focus antimicrobial eff ector molecules (31). 
We analyzed whether PTX3 colocalizes with NETs upon 
stimulation. As shown in Fig. 4, after 40 min of stimulation 
with IL-8, LPS, or PMA (Fig. 4 A) or the conidia of A. fumigatus 

Figure 2. Localization of PTX3 within neutrophil granules. 

(A) Localization of PTX3 in freshly isolated neutrophils by confocal micro-

scopy. Cells were fi xed and stained for human PTX3 and MPO (left), PTX3 

and gelatinase (middle), and PTX3 and lactoferrin (right; see Materials and 

methods). DNA labeling is also shown (Hoechst 33258). Insets show en-

largements of the indicated areas. Bars, 10 μm. (B) Localization of PTX3 

in neutrophil-specifi c granules. Cells were stained for PTX3, gelatinase, 

and lactoferrin (see Materials and methods). A representative cell is shown. 

Specifi c granules were identifi ed as lactoferrin+ and lactoferrin+/

gelatinase+; tertiary granules were identifi ed as gelatinase+. Insets 

show  enlargements of the indicated areas. Bars, 10 μm. (C) Analysis 

of PTX3 content in neutrophil subcellular fractions. PTX3, gelatinase, 

lactoferrin, and α-mannosidase content in each fraction were deter-

mined by ELISA or using a functional assay for α-mannosidase. 

Results are expressed as a percentage of the relative amount in the 

collected fractions.
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(Fig. 4 B), PTX3 was found associated with NETs. PTX3 
binds conidia from A. fumigatus and plays a nonredundant 
role in resistance against this fungus (15). Interestingly, both 
PTX3 and conidia were found associated to NETs (Fig. 4 B). 
Thus, PTX3 is rapidly released by neutrophils (Fig. 4 A and 
Fig. 3 D) and localizes in NETs.

Characterization of neutrophil PTX3

As mentioned above, Western blot analysis revealed two or 
three immunoreactive PTX3 isoforms in human neutrophils, 

depending on the donor tested (Fig. 1 B and Fig. 5, left). 
Three immunoreactive bands were also evident in the super-
natants of activated neutrophils (Fig. 5, right), with molecular 
masses ranging from 47 to 250 kD. A previous study reported 
that PTX3 is glycosylated at the Asn 220 residue (18). A re-
cent characterization of the PTX3 glycosidic moiety revealed 
three antennary structures and a role in the interaction with 
C1q (47). We thus analyzed the level of PTX3 glycosylation 
in neutrophils. Treatment of neutrophil cell lysates and cul-
ture supernatants with N-glycosidase F resulted in a decrease 

Figure 3. Secretion of PTX3 by activated neutrophils. (A and B) 

FACS analysis of intracellular PTX3 expression in neutrophils stimulated 

for 2 h with 10 μg/ml S. aureus or 10 μg/ml FITC-labeled E. coli (A) or 

in DCs stimulated or not for 8 h with 80 ng/ml LPS (B). Representative 

results from one to fi ve experiments are shown. (C–E) Analysis of PTX3 

release upon neutrophil stimulation. (C) 2 × 106 cells/ml of neutrophils 

were activated for 16 h with 1 or 10 μg/ml E. coli, S. aureus, or zymosan; 

1 or 10 ng/ml PMA; 0.01 or 1 μM ionomycin; or 20 ng/ml TNFα. 

(D) Time-dependent release of PTX3 in neutrophils (nonstimulated or 

stimulated with 10 μg/ml S. aureus or 10 ng/ml PMA) is shown. Super-

natants were collected at the indicated time points. (E) Induction of 

PTX3 release by TLR agonists in neutrophils pretreated or not with 

50 ng/ml GM-CSF. Supernatants were collected at 16 h. PTX3 was 

 quantifi ed in the supernatants by ELISA. Results are expressed as 

ng/ml (mean ± SD; n = 6). MPO (F) and MMP-9 (G) were quantifi ed 

in the supernatants of neutrophils stimulated for 16 h with the indi-

cated stimuli; results are expressed in ng/ml, showing the mean of two 

representative experiments. (H) PTX3 mRNA expression analyzed by 

RT-PCR in neutrophils untreated or stimulated for 8 h with 100 ng/ml 

LPS, 10 μg/ml E. coli, 10 μg/ml S. aureus, 10 μg/ml zymosan, 20 ng/ml 

TNFα, 10 ng/ml PMA, or 1 μM iononmycin. RNA integrity and cDNA 

synthesis were verifi ed by amplifying GAPDH cDNA. *, P < 0.01 for 

untreated versus GM-CSF–treated cells.
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of the apparent molecular mass of PTX3 (Fig. 5). As expected 
on the basis of PTX3 synthesis during neutrophil diff erentia-
tion but not in mature PMN, tunicamycin did not modify 
the Western blot profi le in resting and activated neutrophils. 
In contrast, it prevented the glycosylation of newly synthe-

sized PTX3 in LPS-activated DCs, resulting in a decrease of 
PTX3 release in the supernatant (Fig. S3, available at http://
www.jem.org/cgi/content/full/jem.20061301), as previously 
reported (48). Moreover, an Asn®Ser substitution at posi-
tion 220 was introduced in PTX3 (N220S mutant). Recom-
binant wild-type and N220S PTX3 were detected in the 
supernatants of Chinese hamster ovary (CHO) cells in a mul-
timeric form (Fig. 5, right). Collectively, these data show that 
neutrophils contain a mature glycosylated form of PTX3 that 
associates in the extracellular milieu to form multimers inde-
pendently of glycosylation.

In vitro and in vivo relevance of PTX3 expression 

in neutrophils

We evaluated whether neutrophil-derived PTX3 is func-
tional in recognizing ligands of self or microbial origin and 
may play a role in microbial recognition and destruction. 
First, we found that PTX3 purifi ed by immunoaffi  nity from 
human PMN lysate bound to immobilized C1q and OmpA 
from K. pneumoniae; similarly, neutrophil-released PTX3, 
obtained by concentration of PMN supernatant, bound to 
A. fumigatus conidia, as did the recombinant protein (Fig. S4, 
A and B, available at http://www.jem.org/cgi/content/full/
jem.20061301/DC1) (15, 18, 24).

Second, we studied neutrophil expression of PTX3 in the 
mouse. Mature mouse neutrophils constitutively express 
PTX3, as assessed by Western blotting using anti-PTX3 pAbs 
or mAbs (Fig. 6 A). Bone marrow–derived (two experiments; 
not depicted) and peritoneal (fi ve experiments performed 
in two diff erent laboratories; Fig. 6 B) neutrophils from 
PTX3−/− mice showed a signifi cantly lower phagocytosis of 
conidia from A. fumigatus, with a 31 ± 7% reduction com-
pared with PTX3-competent cells (Fig. 6 B, left). 1.1 μM of 
exogenous PTX3 caused a signifi cant increase in the phago-
cytosis of conidia by PTX3-competent and incompetent neu-
trophils (phagocytic index = 102 and 76% for PTX3+/+ cells 
with and without PTX3, respectively; phagocytic index = 99 
and 64% for PTX3−/− cells with and without PTX3, respec-
tively). In the presence of exogenous PTX3, no diff erence 
was detected in the phagocytic activity of PTX3-competent 

Figure 4. PTX3 is localized in NETs. (A) Neutrophils were exposed to 

100 ng/ml IL-8, 100 ng/ml LPS, or 2.5 ng/ml PMA for 40 min. (left) PTX3 

staining. (right) PTX3 and DNA staining. Bars, 10 μm. (B) Neutrophils 

 exposed to conidia from A. fumigatus; a differential interference contrast 

(Nomarski technique) is shown in the bottom panels. In both A and B, 

PTX3 immunostaining was done on nonpermeabilized neutrophils. 

Bars, 5μm.

Figure 5. Biochemical analysis of PTX3 in neutrophils. Cell lysates 

from nonstimulated cells (left) and supernatants from S. aureus–

 stimulated neutrophils (right) were either untreated (−) or treated with 

N-glycosidase F (+). Supernatants from CHO cells transfected with wild-

type or N220S mutant PTX3 were collected after a 24-h culture (right). 

PTX3 was analyzed by Western blotting using rabbit polyclonal anti-PTX3 

and revealed by peroxidase-labeled anti–rabbit IgG antibody and ECL.
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and incompetent neutrophils (Fig. 6 B, right). Similarly, the 
conidicidal activity of PTX3−/− PMN was severely impaired 
compared with that of PTX3+/+ PMN (10 and 45%, respec-
tively) and was increased 30% by the addition of recombinant 
PTX3 (not depicted).

In an eff ort to assess the actual in vivo relevance of neu-
trophil-associated PTX3, cyclophosphamide-treated PTX3−/− 
and PTX3+/+ mice were infected with Aspergillus conidia 
and given PTX3−/−, PTX3+/+, or PTX3+/− PMN, macro-
phages, or purifi ed CD4+T cells 3 h later. Mice were moni-
tored for fungal growth 2 d later by quantifying the  chitin 
content in the lung (49). Results showed that injection of 
PTX3+/+ and PTX3+/− neutrophils, but not PTX3−/− cells, 
in PTX3−/− mice decreased fungal growth (Fig. 6 C). No 

protective eff ect was observed using macrophages or CD4+ 
T cells. As a control, PTX3+/+ or PTX3+/− neutrophils also 
prevented fungal growth in PTX3+/+ mice, but the eff ect 
was less pronounced than in highly susceptible PTX3−/− 
mice (Fig. 6 C). No such eff ect was observed with PTX3−/− 
neutrophils or macrophages (Fig. 6 C).

D I S C U S S I O N 

The prototypic long PTX3 has long been known to be 
 produced by diverse cell types on demand, i.e., in a gene 
 expression–dependent fashion in response to extracellular 
 signals (e.g., LPS, IL-1β, TNFα, and TLR agonists) (3). The fi nd-
ing that PTX3 is stored in neutrophil granules is therefore 
unexpected. PTX3 is not stored in MPO+ granules (primary 
or azurophilic). By confocal analysis among the MPO− gran-
ules, PTX3 was found to localize in lactoferrin+ and in lacto-
ferrin+/gelatinase+ (specifi c) but not in gelatinase+ (tertiary) 
granules. Storage of PTX3 in neutrophil granules is selective, 
inasmuch as short PTXs are absent and other granulated cir-
culating elements (eosinophils, basophils, and NK cells) do 
not contain preformed PTX3. In addition to the diversity 
generated during granulopoiesis, granules are secreted in a 
targeted manner, with a timing hierarchy in granule exocyto-
sis (50, 51). PTX3 is localized in granules that are rapidly 
mobilized and secreted upon stimulation, in agreement with 
its early detection in the supernatants of stimulated neutro-
phils. Expression of PTX3 transcripts is confi ned to imma-
ture myeloid elements, and mature neutrophils only act as a 
reservoir of preformed PTX3. Thus, neutrophils represent a 
reservoir of this PRR and release it in response to microbial 
or infl ammatory signals.

The release of PTX3 by neutrophils is induced by micro-
organisms and TLR agonists and, to a lower extent, by pro-
infl ammatory cytokines. Latex beads do not induce secretion 
of PTX3, suggesting that phagocytosis is not suffi  cient and 
that TLR recruitment is required to trigger its release by neu-
trophils. This dichotomy of PTX3-inducing mediators be-
tween neutrophils and other cell types is of physiological 
signifi cance. Indeed, neutrophils are the fi rst cells recruited 
into tissues in response to microorganism entry. Neutrophils 
are thus highly sensitive to microbes and microbe-derived 
components, suggesting that PTX3, rapidly released by infi l-
trating neutrophils, interacts with microorganisms and facili-
tates their internalization by neutrophils themselves, as well as 
resident and/or recruited professional APCs (19). Microor-
ganisms and TLR agonists, the main inducers of PTX3 re-
lease, also induced the release of MPO and MMP-9, which 
are stored mainly in azurophilic and tertiary granules, respec-
tively. These results suggest that microorganisms and TLR 
agonists induce the release of the molecules stored within the 
three types of granules.

Upon exposure to microbial or infl ammatory signals, 
viable neutrophils extrude nuclear components that form an 
 extracellular DNA fi brillary network. NETs trap microbes 
and retain neutrophil antimicrobial molecules (31). Therefore, 
NETs serve as a focal point to focus the action of antimicrobial 

Figure 6. Functional role of neutrophil-derived PTX3. (A) Analysis 

of PTX3 expression in mouse bone marrow–segmented neutrophils from 

C57BL/6 mice by Western blotting. Results are representative of three 

independent experiments. A pAb or mAb (16B5) was used. (B, left) Phago-

cytosis of A. fumigatus conidia by peritoneal neutrophils from PTX3−/− 

or PTX3+/+ mice after 15 or 45 min. One representative experiment out 

of fi ve performed is shown. *, P < 0.01. (B, right) Effect of 50 μg/ml of 

exogenous PTX3 in the phagocytosis of conidia by PTX3-competent 

and incompetent neutrophils (45 min of incubation). One representative 

experiment out of fi ve performed is shown. (C) Role of PTX3 in neutrophil-

mediated resistance against A. fumigatus. 108 A. fumigatus conidia 

per 20 μl were given intranasally to PTX3-defi cient or -competent mice 

pretreated with cyclophosphamide. 3 h later, mice were given 106 

neutrophils, macrophages, or CD4+ T cells i.v. from PTX3+/+, PTX3+/−, or 

PTX3−/− mice. Chitin content was measured as a correlation of fungal 

growth (mean ± SEM; n = 3). *, P < 0.05 using the Student’s t test.
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molecules. In this paper, we report that part of exocytosed 
PTX3 can localize in NETs. Therefore, in addition to anti-
microbial molecules, NETs can concentrate and focus the 
action of PTX3, a functional ancestor of antibodies.

The PTX3 protein is expressed in circulating PMN in 
the absence of transcripts, whereas NF-κB–driven PTX3 
production (52) is induced in a variety of cells by microbial 
 sensing and infl ammatory cytokines (3). PTX3 mRNA was 
detected in promyelocytes and myelocytes/metamyelocytes 
but not in bone marrow–segmented neutrophils. In agree-
ment with this result and a previous report (11), we observed 
that the promyelocytic cell line HL60 expresses PTX3 
mRNA. A previous study reported that PTX3 is expressed 
only at the myelocyte stage (29), and on this basis localization 
of PTX3 in specifi c granules was postulated, a hypothesis 
confi rmed by our results. Collectively, we can hypothesize 
that, in accordance with the targeting-by-timing hypothesis 
(the protein content into distinct granules is determined by 
the time of their biosynthesis), PTX3 mRNA is expressed at 
a late stage of promyelocyte diff erentiation and in myelo-
cytes/metamyelocytes and that most PTX3 is synthesized at 
the myelocytes/metamyelocytes stage, a result in agreement 
with its preferential localization in secondary granules.

PTXs usually form multimers with a discoid arrangement 
of fi ve subunits (3). PTX3 assembles as a decamer and can be 
produced as 10–20 subunit multimer proteins (18). PTX3 in 
neutrophil granules is mainly in the monomer form, and mul-
timeric forms are detected in the supernatants of activated 
neutrophils. The formation of PTX3 multimers is not depen-
dent on glycosylation (47). However, glycosylation appears 
crucial for the release of neo-synthetized PTX3, as observed 
in DCs (this study) and fi broblasts (48). These results show 
that human neutrophils contain a mature glycosylated form of 
PTX3 that assembles as multimers in the extracellular milieu.

Myeloid, but not plasmacytoid, DCs and macrophages 
are major producers of PTX3 (10). Over a period of 24 h, 
DCs release �50 ng of PTX3 per 106 cells (10). We report 
that neutrophils contain 24.9 ± 3.8 ng of this PRR per 106 
cells (n = 5). Upon stimulation, they release �25% of stored 
PTX3, with a part of it remaining cell associated, presumably 
with NETs. Given the abundance of neutrophils in the cir-
culation and in the early phases of infl ammatory reactions in 
tissues, these cells represent a major source of PTX3 covering 
a temporal window preceding gene expression–dependent 
production. Under conditions of tissue damage (e.g., myo-
cardial infarction) or infection (e.g., sepsis), PTX3 levels in-
crease rapidly. For instance, in acute myocardial infarction 
with ST elevation, PTX3 reaches a peak in 6–8 h, compared 
with 36–48 h for CRP (53). Under these conditions, high 
PTX3 is an independent marker associated with death (54). 
The results reported in this paper shed new light on PTX3 
elevations in pathological conditions and on their pathophys-
iological implications. It is likely that rapid release of stored 
PTX3 by activated neutrophils plays a role in the early phases 
of its elevation in pathology, preceding gene expression–
 dependent production.

Finally, we evaluated the in vivo relevance of PTX3 ex-
pression in neutrophils. PTX3-defi cient mice are highly sen-
sitive to A. fumigatus infection (15). Eff ector mechanisms of 
innate immunity are crucial to prevent aspergillosis (55), and 
among innate cells, neutrophils are essential in the initiation 
of the acute infl ammatory response. Moreover, susceptibility 
to fungal infection can be associated, among other parame-
ters, to neutropenia (56), and impairment of neutrophil anti-
fungal responses results in an increase of fungal burden (57). 
These data underline the essential role played by neutrophils 
in controlling A. fumigatus infection. We report that PTX3 
expressed by neutrophils is essential to control fungal growth 
in vitro and in vivo. Innate and adaptive immunity are both 
essential for the development of a protective antifungal im-
mune response. Generation of a Th1-oriented A. fumigatus–
specifi c immune response is associated with protection (58, 59). 
Injection of PTX3 in PTX3−/− mice favors the generation 
of a protective Th1 anti-Aspergillus immune response (15). 
Neutrophil-derived PTX3, in addition to DC-derived 
PTX3, may be involved in the orientation of the immune 
response toward a protective Th1 cell phenotype. Neutrophils, 
an innate cell type without professional antigen- presenting 
functions, may participate in the orientation of specifi c anti-
microbial immune responses via the release of this preformed 
soluble PRR.

PTX3 is a long PTX conserved in evolution, with func-
tional properties (e.g., complement activation and opsoniza-
tion) that qualify it as a functional ancestor of antibodies. This 
fl uid-phase PRR binds diverse microbial agents, activates the 
classic pathway of complement, and facilitates ingestion by 
innate immunity cells (3, 17, 24, 28), including neutrophils 
(Fig. 6 B). Gene-modifi ed mice unequivocally indicate that 
PTX3 represents a nonredundant humoral amplifi cation loop 
of the innate immune response to diverse microbial agents 
(3, 15, 19, 24). Neutrophils store a variety of constituents in 
their granules, including adhesion receptors (e.g., CD11b 
and CD18), proteolytic enzymes (e.g., cathepsin G), eff ectors 
and regulators of matrix degradation (e.g., gelatinase), and 
antimicrobial molecules (25–27). The results reported in this 
study broaden the repertoire of eff ector molecules stored and 
released by neutrophils to include a humoral PRR with 
functional properties of a predecessor of antibodies. PTX3-
defi cient neutrophils have defective recognition, phagocy-
tosis, and killing of conidia, completely restored by PTX3, 
and this molecule is nonredundant for protection against 
A. fumigatus by neutrophils. Thus, PTX3 stored in neutro-
phil granules amplifi es microbial recognition by neutrophils 
themselves as well as presumably by neighboring innate im-
munity cells.

MATERIALS AND METHODS
Leukocyte purifi cation. Monocytes were isolated and diff erentiated 

into DCs by a 5-d culture with 20 ng/ml IL-4 and 20 ng/ml GM-CSF 

(R&D Systems) (60). CD14−CD86− immature DCs were used. After 

Ficoll-Paque centrifugation, neutrophils were separated from erythrocytes by 

3% dextran (GE Healthcare) density gradient sedimentation. Purity, determined 



JEM VOL. 204, April 16, 2007 801

ARTICLE

by FACS analysis on forward scatter/side scatter parameters, was routinely 

>98%. Spontaneous activation of purifi ed neutrophils was eva luated by ana-

lyzing CD11b and l-selectin expression by FACS; only l-selectin+CD11blow 

neutrophils were used. Neutrophils were also isolated from whole blood 

collected from healthy donors using a two-step buoyant density centrifugation 

on a Ficoll gradient (61).

Bone marrow cells (obtained from healthy donors) at diff erent myeloid 

diff erentiation stages were isolated as previously described (36). In brief, 

bone marrow cells were separated by density sedimentation on a discontinu-

ous Percoll gradient (GE Healthcare) of 1.065 g/ml and 1.08 g/ml. Three 

bands of cells, numbered in order of decreasing density, were harvested: 

band 1 primarily contained segmented neutrophils, band 2 primarily con-

tained metamyelocytes and myelocytes, and band 3 contained promyelocytes 

(36). The three populations were subjected to immunomagnetic depletion 

of nongranulocytic cells, as previously described (29) using MACS (Miltenyi 

Biotec). The purity of cell populations was assessed by microscopy and cell 

surface phenotype (29). Eosinophils and basophils were enriched by deple-

tion of magnetically labeled cells (MACS).

Blood and bone marrow samples were obtained with written informed 

consent in accordance with the Angers University Hospital ethical com-

mittee requirements.

Cell act ivation. 2 × 106 neutrophil cells/ml in RPMI 1640 (2% FCS) 

were either nonstimulated or stimulated with 1–10 μg/ml E. coli, S. aureus, 

or zymosan (all obtained from Invitrogen); 20 ng/ml IL-1β or TNFα (R&D 

Systems); 1–10 ng/ml PMA; 0.01–1 μM ionomycine; 100 ng/ml LPS (from 

E. coli serotype O55:B5; all purchased from Sigma-Aldrich); 500 ng/ml 

Pam3CSK4 (a TLR2 agonist); 5 μg/ml R848 (a TLR7/8 agonist), 2 μg/ml 

fl agellin (a TLR5 agonist; all obtained from InvivoGen); and 10 μg/ml poly 

(I:C) (a TLR3 agonist; Sigma-Aldrich). 2 × 106 DCs/ml were stimulated for 

8, 16, or 24 h with the stimuli indicated in the fi gures. PTX3 levels in super-

natants were quantifi ed by ELISA.

NET formation was induced as previously described (31). In brief, neutro-

phils (400 μl of cells at 2 × 106 cells/ml and 8 × 105 cells/well) were seeded 

on rounded glass coverslips treated with 1% poly-l-lysine (Sigma-Aldrich), 

allowed to settle, and treated for 40 min with 100 ng/ml IL-8 (PeproTech), 

2.5 ng/ml PMA, 100 ng/ml LPS, and A. fumigatus conidia at a 1:5 ratio.

Cell lysates. 106 cells were lysed in 10 mM Tris-HCl, pH 7.6, 5 mM 

EDTA, 1% Triton X-100, or Nonidet P40 (Sigma-Aldrich) plus protease 

inhibitors (Roche Diagnostics). Lysates were centrifuged at 14,000 rpm for 

15 min at 4°C to remove cellular debris. For N-glycosidase F treatment, 

SDS (0.2% fi nal, vol/vol) was added to cell lysates or cell culture superna-

tants before heating at 100°C for 5 min. Lysates were treated with 5 U/ml 

N-glycosidase F (Roche Diagnostics) for 16 h at 37°C before analysis by 

Western blotting.

Site-directed mutagenesis. The complete PTX3 cDNA was cloned into 

the pCDNA3.1+ vector (Invitrogen). The N220S substitution was intro-

duced using a kit (QuickChange XL; Stratagene). CHO cells were trans-

fected using Lipofectamine (Invitrogen).

Subcellular fractionation. Subcellular fractionation of neutrophils was 

performed as previously described (62). In brief, fresh neutrophils were dis-

rupted by nitrogen cavitation (Parr Instruments Co.), and the resulting cavi-

tates were centrifuged to eliminate pellet nuclei and the remaining intact 

cells (63). The postnuclear supernatant containing cytosol, granules, and 

light membranes was immediately separated by centrifugation on a three-

layer Percoll density gradient. 3-ml gradient fractions were collected after a 

sonication, frozen, and thawed for two times and analyzed for PTX3 content 

and for localization of subcellular organelles by marker assays (62). An 

α-mannosidase functional assay was used for azurophil granules (64); gelatinase, 

lactoferrin, and albumin ELISA were used to identify, respectively, gelatinase+ 

(tertiary) granules, lactoferrin+ (specifi c) granules, and secretory vesicles/

light membranes (40).

FACS analysis. PTX3 expression was analyzed on fi xed (2% paraformalde-

hyde) and permeabilized (0.1% saponin; Sigma-Aldrich) cells with anti-

PTX3 mAb (MNB4; Qbiogene) in PBS containing 0.01% saponin. Bound 

antibodies were revealed by PE-labeled anti–rat IgG mAb (BD Biosciences). 

Isotype control mAb was obtained from BD Biosciences. Fluorescence was 

analyzed using a cytofl uorometer (FACScan; BD Biosciences), and results 

are expressed in mean fl uorescence intensity values.

ELISA and Western blotting. PTX3 (53), MPO (sensitivity = 0.4 ng/ml; 

HyCult Biotechnology), and total gelatinase (MMP-9, sensitivity = 30 pg/ml; 

R&D Systems) were quantifi ed by ELISA. For Western blotting, proteins 

(corresponding to 0.4 × 106 cells or 5 μl of supernatants) were electro-

phoretically separated on a 10% polyacrylamide gel in reducing conditions 

and transferred to a membrane (Immobilon; Millipore). After saturation, 

membranes were incubated for 16 h at 4°C with 3 μg/ml anti-PTX3 pAbs 

or mAbs (16B5) and with 1 μg/ml peroxydase-labeled anti–rabbit IgG anti-

body or peroxydase-labeled anti–rat IgG antibody (Biosource International). 

Protein loading was verifi ed with an anti-actin pAb (Sigma-Aldrich) re-

vealed by the peroxydase-labeled anti–rabbit IgG antibody. Bound antibod-

ies were detected using the ECL system (GE Healthcare).

Confocal microscopy. Cytospins were fi xed with 4% paraformaldehyde 

and permeabilized for 5 min with 0.2% Triton X-100 (Sigma-Aldrich) in 

PBS, pH 7.4, before incubation for 1 h at 4°C with 10% normal goat 

serum (Sigma-Aldrich) and then for 2 h at 4°C with 0.5 μg/ml biotin-

conjugated rat anti–human PTX3 mAb (1 μg/ml; MNB4), or with IgG2a 

control mAb. Slides were incubated with streptavidin–Alexa Fluor 488 

conjugate, followed by 1 μg/ml Hoechst 33258 or by 5 μg/ml propidium 

iodide and RNase (Invitrogen). The following reagents were also used: 

rabbit anti-MPO pAb (Invitrogen), mouse antilactoferrin mAb (clone 

NI25; Calbiochem), a rabbit antigelatinase pAb (Chemicon), and Alexa 

Fluor 647–conjugated goat anti–rabbit and anti–mouse IgG secondary 

antibodies. In each step, cells were washed with 0.2% BSA/0.05% Tween 

20 in PBS, pH 7.4.

To stain NETs, neutrophils were fi xed, blocked, and washed as de-

scribed in the previous paragraph, without permeabilization. Cells were in-

cubated with 1 μg/ml of biotin-conjugated PTX3 affi  nity-purifi ed rabbit 

IgG, followed by streptavidin–Alexa Fluor 647 conjugate (Invitrogen). For 

DNA detection, Syto 13 (Invitrogen) plus RNase (Sigma-Aldrich) was used. 

Sections were mounted with a reagent (FluorSave; Calbiochem) and analyzed 

with a laser scanning confocal microscope (FluoView FV1000; Olympus). 

Images (1,024 × 1,024 pixels) were acquired with an oil immersion objec-

tive (100× 1.4 NA Plan-Apochromat; Olympus). Diff erential interference 

contrast (Nomarski technique) was also used. Overlay images were assem-

bled, and ImarisColoc (version 4.2; Bitplane AG) software was used for 

quantitative colocalization and statistical analysis.

Analysis of PTX3 and MPO mRNA expression by RT-PCR. Total 

RNA from DCs and peripheral blood neutrophils was extracted using 

TRIzol reagent (Life Technologies). Total RNA from neutrophil precur-

sors and HL60 (American Type Culture Collection) was purifi ed using 

the RNeasy mini kit (QIAGEN). cDNA was synthesized from 1 μg of 

total RNA using an oligo-dT primer and reverse transcriptase (GE Health-

care). PCR amplifi cation was performed with an amount of cDNA corre-

sponding to 25 ng of the starting total RNA using specifi c oligonucleotides 

(PTX3, 5′-G T G C A G G G C T G G G C T G C C C G -3′ and 5′-G C C G C A C A-

G G T G G G T C C A C C -3′; MPO, 5′-C C T T C A T G T T C C G C C T G G A C A-

A T C G -3′ and 5′-C G G A T C T C A T C C A C T G C A A T T T G G -3′). RNA 

integrity was assessed by GAPDH cDNA amplifi cation. The PCR products 

were analyzed on a 1% agarose gel by electrophoresis and visualized with 

ethidium bromide.

Mouse neutrophils and phagocytosis assay. Neutrophils from C57BL/6 

mice (Charles River Laboratories) were isolated from bone marrow by 

Percoll step gradient (52, 65, and 75% Percoll). An enriched neutrophil 
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 population was recovered at the 65–75% interface. Purity was analyzed by 

morphology, Giemsa staining, and FACS using anti-Ly6G (clone 1A8; BD 

Biosciences), and antineutrophil mAb (clone 7/4; Serotec) was routinely 

>96%. Cells were also isolated from wild-type and PTX3−/− total bone 

marrow (15, 65) or from the peritoneal cavity 4 h after a 1.5-ml 3% thiogly-

collate (Difco) injection and plated at 5 × 106 cells/ml in a fi nal volume of 

0.5 ml RPMI 1640 with human serum in a 24-well plate. A. fumigatus co-

nidia were added at 2.5 × 107 cells/well. After 15 or 45 min of incubation at 

37°C, phagocytosis was blocked by using NaF (fi nal concentration = 0.2 M). 

In some of the experiments, 50 μg/ml of recombinant PTX3 was added. 

Cytospins were stained with Diff  Quick (Dade, Biomap). At least 200 neu-

trophils per sample were counted under oil immersion microscopy (100× 

objective). Results are expressed as a phagocytic index: (percentage of neu-

trophils containing at least one conidia) × (mean number of conidia per 

positive cell).

Infection. Mice were administered 150 mg/kg cyclophosphamide i.p. 2 d 

before the intranasal infection with 108 A. fumigatus conidia per 20 μl (15). 

Mice received 106 cells per 500 μl of peritoneal neutrophils, splenic macro-

phages, or CD4+ T cells i.v. 3 h after the infection. Quantifi cation of fungal 

growth in the lungs was done by the chitin assay (49), and results are ex-

pressed as micrograms of glucosamine per pair of lungs. Peritoneal neutro-

phils were obtained 18 h after the i.p. injection of 1 ml of endotoxin-free 

10% thioglycolate solution (Difco). Endotoxin was depleted from all solu-

tions with Detoxi-Gel (Pierce Chemical Co.). Purity was >98%, as deter-

mined by Cytospin and FACS analysis (GR-1+ and CD11b+). Macrophages 

were obtained by 2 h of plastic adherence of spleen cells at 37C°. CD4+ T 

cells were purifi ed from spleens of mice using anti-CD4 magnetic Micro-

Beads (Miltenyi Biotec).

Procedures involving animals and their care conformed to institutional 

guidelines in compliance with national (4D.L. N.116, G.U., suppl. 40, 18-

2-1992) and international (EEC Council Directive 86/609, OJ L 358,1,12-

12-1987; National Institutes of Health Guide for the Care and Use of 

Laboratory Animals) law and policies. All eff orts were made to minimize the 

number of animals used and their suff ering.

Statistical analysis. Statistical analysis was performed using the Student’s 

t test.

Online supplemental material. Supplemental materials and methods de-

scribes the binding assay and the analysis of PTX3, MPO, lactoferrin, and 

MMP-9 mRNA expression in HL60 cells and human bone marrow. Fig. 

S1 shows the constitutive expression of PTX3 (mRNA and protein) in the 

human promyelocytic cell line HL60. Fig. S2 shows the relative content of 

PTX3, as assessed by Western blotting, in neutrophils stimulated for 16 h with 

the indicated stimuli. Fig. S3 shows that the release of PTX3 by neutrophils 

is not aff ected by tunicamycin, in contrast to PTX3 produced by activated 

DCs. Fig. S4 shows PMN-released PTX3 binding to (A) immobilized C1q 

and OmpA and to (B) A. fumigatus conidia. Online supplemental material is 

available at http://www.jem.org/cgi/content/full/jem.20061301/DC1.
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